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Abstract

Contrastive Divergence (CD) is an important maximume-likelihood learning approach for prob-
abilistic graphical models. CD maximizes the difference in likelihood between the observed data
and those sampled from the current model distribution using Markov Chain Monte Carlo (MCMC).
Nevertheless, the overall performance of CD is hampered by the slow mixing rate of MCMC in the
presence of combinatorial constraints. A competing approach BP-CD replaces MCMC with Belief
Propagation (BP). However, their samples are generated from a mean- eld approximation, which
may be far away from the true distribution. Here we propose contrastive divergence learning with
chained belief propagation (BPChain-CD). To generate one sample in CD, we x one variable at a
time based on the marginal distribution computed by BP conditioned on previous variables. We an-
alyze BPChain-CD both theoretically and experimentally. We show that BPChain-CD learns better
models compared with BP-CD and CD on a range of maximum-likelihood learning experiments.

Keywords: Contrastive Divergence; Belief Propagation; Maximum Likelihood Learning.

1. Introduction

The Contrastive Divergence (CD) algorithm has achieved notable success in training energy-based
models including Markov random elds (MRF) and Restricted Boltzmann Machines (RBM) (Hin-
ton, 2002; Carreira-Perpinan and Hinton, 2005; Bengio and Delalleau, 2009; Sutskever and Tiele-
man, 2010; Ceylan and Gutmann, 2018; Jiang et al., 2018; Ruiz and Titsias, 2019) and played a key
role in the emergence of deep learning (Goodfellow et al., 2014; Salakhutdinov, 2015). The idea
is to transform the problem of computing the intractable partition function into approximating the
expectation of the gradient of the log-partition function, where a bunch of sampling methods can be
taken advantage of to approximate the expectation. The approximate gradient is computationally-
cheap. Therefore, the quality of samplers is of great importance.

Traditional CD used a k-step (CD-k) Markov Chain Monte Carlo (MCMC) sampling methods
(Plummer et al., 2006; Andrieu et al., 2003; Hinton, 2012) to attack this problem. To speed up the
convergence of Markov chain, an important variant of CD-k called persistent CD (PCD) (Tieleman,
2008; Tieleman and Hinton, 2009) used a persistent Markov chain during learning to provide a
better approximation to the target distribution than the limited step chain in CD-k. Further work also
employed approximate inference methods, such as mean- eld (MF) and BP as inference routines in
learning Contrastive Divergence (Yedidia et al., 2001; Murphy et al., 2013; Hershey et al., 2014).
Recently an ef cient implementation of BP algorithms (BP-CD) has been proposed (Ping and Ihler,
2017) to deal with MRF and RBM on a large scale.

However, there are fundamental limitations of those approaches. Both of CD-k and PCD do
suffer from learning graphical models with multi-modes. CD methods stagnate when exploring the
peaks of multi-modal distributions in a generative setting due to the low acceptance rate to move
across peaks. Although approximate inference methods are ef cient, MF is conceptually problem-
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atic in the sense that it effectively maximizes an upper bound of the log-likelihood in learning. In
addition, MF uses a unimodal proposal to approximate the multi-modal distribution, which may lead
to unsatisfactory results. Loopy BP usually provides a better approximation of marginals than MF
(Li and Zemel, 2014; Domke, 2013). However, the fundamental problem still exists when we sam-
ple with BP. Despite the better marginals it provides, its samples are generated from a mean- eld
approximation, which may be far away from the true model distribution.

In this work, we propose to embed a chain of Belief Propagation procedures into Contrastive Di-
vergence (BPChain-CD). Different from previous methods, this BPChain sampling schedule could
ef ciently solve the mean- eld problem arisen by BP and the slow mixing rate problem of MCMC.
Instead of sampling in a mean- eld manner, BPChain generates samples sequentially according
to a conditional probability chain. More speci cally, to generate one sample in each gradient de-
scent iteration of CD, we x one variable at a time based on the marginal distribution computed
by BP conditioned on previously generated variables. Because of this different sampling approach,
BPChain-CD generates samples more likely from the joint model distribution, rather than each
marginal when BP gives a suf ciently good approximate marginal in a loopy graph. Therefore,
BPChain-CD has the ability to guide the gradient descent in more correct direction, making the
algorithm converge faster and tting training data more precisely.

Empirical experiments demonstrate that BPChain-CD learns better models compared to CD and
BP-CD in a series of maximum-likelihood learning experiments. We demonstrate that, under the
multi-modal setting of Markov random elds, learning MRF models with BPChain-CD can provide
much higher average likelihood than the state-of-the-art CD methods. We also show in a structured
sequence generation task that our algorithm learns the most suitable model of some given sequences,
while traditional CD with Gibbs sampling learns badly and BP-CD is heavily biased.

The contribution of this paper can be summarized as follows: (1) We addressed potential prob-
lems of MCMC and BP as the sampler in Contrastive Divergence learning. (2) We proposed
BPChain, a conditional probability chain of BP, to sample from multi-modal distributions where
each dimension is correlated with each other. (3) We formulated BPChain-CD by embedding
BPChain in the CD framework, exhibiting a superior learning ability compared to both CD and
BP-CD. (4) Experimental results on discrete MRF and structured sequences generation showed su-
perior performance of our method.

2. Preliminaries

In this section, we review some results on probabilistic graphical models and Contrastive Divergence
for Maximum-Likelihood (ML) Learning (Carreira-Perpinan and Hinton, 2005).

2.1 Markov random eld

We consider a graphical model speci ed as a factor graph With jV|j discrete random variables

in the cartesian produ®t = X; X » X n. We consider a function ovef 2 X as follows:
Y
f(X;)= (fXg; )
21

which factors into potentials : fXg ! R*, wherel is the set of all the cliques of the graph,
fXg V is a subset of variables that the factor depends on, and is a vector of model
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parameters. We consider a normalized distribufx ; ) = ﬁf (X;) wherez() , the

normalization constant, also known as the partition function, is de ned(gs= x F(X5) .
Notice however that computing() is normally intractable in practice.

2.2 Contrastive Divergence Learning

In the context of graphical models learning, we want to t a set of given data pbkmdf:l , Xk 2
f0; 1gV, using a graphical mode(X ; ) with unknown model parameters. For convenience, in
this paper we use indé«to denote thé-th sample, and we use indeto denote thé-th dimension
for both random vectoX and sample. Taking those given data poirftxkgE:1 as the training set,
we learn our model parameters by maximizing the probability of the traininghagt p(X; ) ,
which is equivalent to minimize the negative logm ; ) , denoted a&(X; )

1 X
mNE(X; )=min  logZ() K logf (xk; )
k=1

Contrastive Divergence (CD) learning (Hinton, 2002) has been successfully applied ta (&arn)
by avoiding directly computing the intractatdd ) . In each iteration step of gradient descent, CD
estimates the gradient &(X ; ) . Given the partial derivative

@EX;) _ @ogz() Paogf(x;) F

@ @ @ X
whereh ix is the expegtation ofgiyen the data distribution of . Here the rst term can be sub-
stituted as@og@z() = @ng@(x;) o Although this expectation is generally intractable, it
p(X;

could be numerically approximated by drawing samples from the proposed distrilp@¥an) .
Sampling fromp(X; ) requires knowledge of the partition function which is unknown; there-
fore, sampling techniques such as MCMC use many cycles to transform the original training data
fxkd., into data drawn from the model distributigX ; ) . Using such a sampling scheme, we
can take gradient descent to devise an updating rule for the parameters

wis 1, D@ogf(x; HE Paogf(x; HE
@ X0 @ X P

where X 9 is the distribution of training se‘txkgE:l, X P is the surrogate model distribution of
samples drawn indirectly from the model distribution, anid the learning rate.

2.3 Sampling in Contrastive Divergence

MCMC (Andrieu et al., 2003) is widely used to transform samples from the training set to those
from the model distribution. Additionally, Belief Propagation (Yedidia et al., 2001; Murphy et al.,
2013) could also help sample from the model distribution by sampling from marginal distributions
of each dimensiorX; individually. Here we will brie y introduce these two kinds of algorithms
and analyze each sampling procedure's potential problems in the next section.

Gibbs Sampling. MCMC takes advantage of a Markov Chain to sequentially sample from
the model distribution. As a special case of MCMC, Gibbs Sampling is widely used in Contrastive
Divergence for training discrete probabilistic graphical models. In each MCMC step, Gibbs samples
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one dimension based on a conditional marginal distribution. In detaxl! 2tRN denote the current
sample, Gibbs sampling proceeds as follows: Firstly, it picks a dimension indeixl; ;Ng
either via round-robin or uniformly at random, followed by settidg: = x!, for all the index
j 61,le, x“’i1 = x',, wherex ; is all the dimensions ok except thei-th dimension. Then,
generate<}+1 from p(X;jXt; = x',). The acceptance rate of Gibbs sampling is 1 all the time, but
the probability of Gibbs sampling to change one dimension from one sample to the next one could
be very low in some time, which increases the time of convergence.

Belief Propagation. In Belief Propagation (Yedidia et al., 2001; Murphy et al., 2013) over
the distributionP (X ; ) , each variableX; can be viewed as a variable nodeln addition, each
parameter can be viewed as a factor nodeAll variable and factor nodes form a bipartite graph.

Then, a message from a variable noeto a factor node is

Y
mi;  (Xj) = m o (Xj)
®@N(@)nf g

and a message from a factor node to a variable nod«; is
X Y
m . i(Xj) = (fXg: ) Mo (X)
X %2f Xg nfXig i%2N( )nfig

whereN (i) is the set of neighboring factor nodesi® ( ) is the set of neighboring variable nodes

to , andfX g is the set of all variables associated with factor nodaVe ensure each massage
passing process to be normalized. After this iterative procedure nally converging, we can compute
the marginal distribution of each variable nodeas

Y
p(Xi) / m 1 i (Xj)
2N (i)

Therefore, we can sample each dimension of variablasX;  p(X;). Recent work (Ping and

Ihler, 2017) embedded BP into Contrastive Divergence to train probabilistic models. They leveraged
a compact representation only dependent on matrix product and element-wise operations, which are
typically highly optimized in modern high-performance computing architectures.

3. Problems on Gibbs Sampling and BP

Though widely used in practice, Gibbs sampling and Belief Propagation have their own essen-
tial problems to some extent. We use a motivating instance in Figure 1 to illustrate the prob-
lems. Assuming we have training dataof binary sequences of length 6, which are drawn from
the distributionP (X ) shown in the left table of Figure 1. The probabilities of drawing 000000
and 111111 are 0.4, and the probabilities of drawing 001100 and 110011 are 0.097, while all of
the rest 60 sequences have a probability of 0.0001 to be drawn. We draw a buKclrarn
f 000009000001 :::;111111 as training data according to probabilRy(X ). We will show both
BP-CD and Gibbs-CD cannot learn the training data well in a reasonable amount of time.

Without the loss of generality, let Gibbs sampling start from the initial sarap@000and
let the model distribution has the same paramete®@§). Then, the conditional distribution
P(Xi = 1ju5 X 1, X413 foralli = 1;2;:::;6 will be 0:0001=(0:0001 + 0:4) = 1=4001
which means it would in expectation take 4001 steps to change one dimension from0to 1. As a
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Figure 1: Suppose we have training data(binary sequence of length 6) obtained by sampling
from a distributionP (X ) shown in the left table. We show the problems of BP-CD and
Gibbs-CD in learning these data. Assuming the model distribution is already well learned,
then it should be very close to that of the training data. Since BP-CD computes the
marginal distribution for each dimension ¥f and sample from marginals, the samples
are actually drawn uniformly from the se00000000000%:::;11111%, which is far
away from that of training data. In addition, consider Gibbs-CD draws samples starting
from 000000, because it leverages each conditional marginal probability to draw samples
of each dimension sequentially, in this multi-modal situation it will take neb@fysteps
in expectation to move from 000000 to 111111. The biased samples drawn by BP-CD
and Gibbs-CD can heavily affect the speed and direction of convergence.

result, moving from 000000 to 111111 would take neaf) steps. Therefore, samples like 000000

will have a large probability of stagnant or moving not far. As a consequence, the sampling bias of
Gibbs-CD will directly affect the speed and direction of gradient descent, leadingdated in a
different manner. Since samples drawn from Gibbs-CD tend to contain only part of peaks because
of the slow mixing rate, they could not make the learning process stop at the right time.

Though sampling by Belief Propagation does not have such a problem, it does suffer from mean-
eld problem because it treats each dimensiorXofndependent with the others when we use it to
sample from marginal distributions of dimensixn. Still in this motivating instance, we also show
that BP-CD fails in learning these training data. Consider we already have a well-learnt model
which has the same parameter$4X ), then samples drawn from the model distribution should be
similar to the training data, yielding a gradient with respect tolose to 0. However, BP-CD rst
computes all marginals and then samples each dimensignfodm each marginal independently.
Because the marginal probability of each dimensioiXois P (X; = 1) = 0 :5, the samples are
in fact drawn from the set df00000Q 000001 :::; 111111 uniformly random, which is far away
from the distribution of training data.

4. Belief Propagation Chain

In Contrastive Divergence learning of a probabilistic graphical model, a sampling schedule is used
to approximate the expectation in order to get rid of the intractable integral. This further requires the
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Figure 2: The procedure of running Belief Propagation Chain to obtain one sample in the iteration

of Contrastive Divergence. From the joint distributig(X ), we rstrun BP to geip(X1)

and sample from it, denoting the sample Then, by xing X1 = x1 in p(X), and
running BP again, we get a sample from distributpfiX 2jX1 = Xx1) asx,. Similarly,

we X X2 = Xz and run BP again, then sample frggfiX3jX1 = X1;X2 = Xp) to

get axz. Keeping sampling from this conditional probability chain, nally we geta
sampled fromp(XjX1 = X1; X2 = X2;:::; Xy 1 = Xp 1). After concatenating these
samples we can obtain a samgle [ X1;X2;:::; Xp] from the joint distributiorp(X ).

quality of the sampler to sample from the model distribution. To avoid suffering from the impact of
multi-modes, we propose Belief Propagation Chain (BPChain), an algorithm which samples each
dimension of the variable sequentially from a conditional distribution chain using Belief Propaga-
tion. We then equip it to Contrastive Divergence to obtain our nal learning algorithm BPChain-CD.

4.1 Joint distribution as conditional probability chain

Sampling from a joint distributiorX p(X1;X2;:::; Xp) can be viewed as sampling from a
chain of conditional distributions

X p(X1)p(X2jX1)  p(XnjXn 15 X2;X1)

Based on this equation, we could rstly samplg  p(X1). Assuming the value oK1 = Xj,

we then sampleX; p(X2jX1 = X1) and get a value oK, asx,. lteratively going along

this chain we nally get all then values by sampling times. Then, combine them together and

we get one sample from the joint distributip(X 1; X 2;:::; X). This sampling schedule makes

the next sample oK independent with the previous one, which avoids the stagnate problem in
Gibbs sampling. Furthermore, compared to Belief Propagation, since the production over all the
conditional distributions is the joint distribution, it ensures us to deal with the situation where each
dimension is correlated with each other.

4.2 Sampling by Belief Propagation Chain

In this part, we introduce BPChain to sample each dimension of the variable sequentially con-
ditioned on the previously sampled dimensions, where BP is used to calculate each conditional
marginal distribution. Though BP outputs only marginals of each variable, it can be leveraged to
approximate a conditional distribution if we X some variables with some values, e.g, if we X
X1 = x1 and run BP on the new mode{X jX 1 = X3; ) , it will give us the marginal distributions
of from X5 to Xy conditioned orX 1 = Xj.

Algorithm 1 demonstrates the procedure of drawing one sample from model distrip(Xion) .
For each iteratiori from 1 to N whereN is the dimension ofX, we run BP on the model
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Input: p(X;) ,N Input: p(X; %), N;T; ; fxige,
initialize x 2 RN at random fort=0toT do
fori=1toN do fork=1toK do
RunBP omp(X jXi 1= Xi 1;:11;X1= X1} ) sk~ BPChainp(X; ');N)
o i istributi , end for
p(Xi; ) marginal distribution oX; after BP wen Py | @ogfi:
SampleX; p(Xj;) togetasamplX;=s = t K kzl(T
Xi s M)
@
end for end for
return x return p(X; )
p(XjXi 1= X; 1;:::;X1 = X1; ) wherex; means value given to random variat{e. It will
output marginal distribution oX; conditioned on the previous sampled values,p(&jX; 1 =
Xi 1;:::;X1 = Xz1; ) . Then, after sampling ®; from this conditional marginal and I&t; = x;,

we go to the next iteration. Finally, by samplibyg times, we outpuk as one sample of random
vectorX . Figure 2 demonstrates this sampling process of BP Chain more speci cally.

We still consider the motivating instance in Figure 1, where training data are drawn from distri-
butionP (X ). Let the training model initialized & (X ), at rst we run BP onP (X ) to getP (X 1)
and sample from it. Assuming we haxe = 1, then after running BP oR (X jX1 = 1), we have
the conditional marginal probability o€, asP (X, = 1jX1 = 1) = 0 :4984=0:5 = 99:68% which
leads tax, = 1 in a large probability. Keeping sampling in this chain, we nally obtain one sample.
Therefore, with BPChain sampling, we are more likely to get rid of the correlation problem of each
dimension. It should be noticed that for non-binary discrete variables, BPChain can work similarly
as the binary case, since multi-valued discrete variables can be represented using a few binary vari-
ables. For continuous variables, one possible solution is to discretize the continuous domain and
then deal with them as non-binary discrete variables. This treatment will sacri ce some precision
but is often tolerable in practice with a ne discretization.

5. Embed BPChain into Contrastive Divergence

We now present details for applying the BPChain method of the previous section to Con-
trastive Divergence Learning, denoted as BPChain-CD. Given the model distrilpi¥an) =

ﬁf (X;) , we take advantage of gradient descent to learning the model parameters by some

training dataf x,gK_, . Maximum-Likelihood learning is taken here and we maximize the likeli-
hood using the Contrastive Divergence framework. In each gradient descent iteration of Contrastive
Divergence, we rst leverage BPChain to drdv samples from the current model, then update
model parameter using both training data and the drawn samples based on the equation

X

K k=1

@ogf (xk; ') @ogf (sc; 1)
@ @

t+1 — oty

(

)

Wherexy denotes training data argg denotes the drawn samples in this iteration. Algorithm 2
demonstrates the whole algorithm in detail. Wheltis updated in each iteration, we sample from
a different model distributiop(X ; ) . Because BPChain leverages BP to sample from the joint
distribution, with the model gradually tting those training data, BPChain has a larger probability
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to get samples similar to training data, thus make the gradient dose to 0. In other words,
BPChain-CD would converge where the model distribution is similar to the distribution of training
data. In addition, because of better gradient descent direction raised by better samples, BPChain-CD
would also converge with less iterative steps than the traditional CD algorithms.

An important aspect differentiating our technique from previous work to embed Belief Propa-
gation (Domke, 2013) and Mean Field Network (Li and Zemel, 2014) is that our algorithm does
not need to compute gradient back through the BP procedure because samples are only used to
approximate the expectation and once they are sampled, they are xed. The extra overhead lies in
repeatedly running BP for all the dimensions in a single sample and running the overall procedure
for all the samples. In practice, BP has been optimized for speed, making the overhead less signi -
cant in the overall execution time. This makes BPChain outperform those important sampling based
algorithms like SampleSearch (Gogate and Dechter, 2011) which requires a non-trival proposal dis-
tribution and is too heavy-duty to be incorporated in CD framework. Since our method depends on
BP, it inherits all the potential problems in BP like slowing learning on non-determined graph struc-
ture and numerical errors that propagate down along the chain of BPChain-CD. However, despite
these problems in BP, BPChain-CD still shows better performance than those compared methods.

6. Experimental Results

In this section we test BPChain-CD in Algorithm 2 in three experiments. For comparison, we con-
sider CD o, denoted as Gibbs-CD, which takes advantage of Gibbs sampling (Carreira-Perpinan
and Hinton, 2005) to sample the next 100 steps in each gradient descent iteration, and Belief Propa-
gation equipped Contrastive Divergence (Ping and lhler, 2017), denoted as BP-CD, which samples
from each marginal distribution obtained by BP in each iteration. To comprehensively evaluate all
algorithms, we set up a Maximum-Likelihood Learning scenario to nd the probabilistic model that
best ts the training dataset. To obtain the training data, we used ACE (Barton et al., 2016) to sam-
ple exactly from a target distribution. The way is to iteratively compute partition function by ACE
to calculate conditional probability and sample sequentially.

We ran experiments on one node of a computing cluster with 24 cores. For each setting of all
the three benchmarks, we x the iteration step of BP in both BPChain-CD and BP-Q0) aich
is enough for BP to converge. Because samples from BPChain are more expensive, to balance time
complexity during learning we drai00samples for BPChain-CD in each iteration wis@00for
both BP-CD and Gibbs-CD. Number of epochs is 1000. However, we run each algorithms on one
cluster node with a walltime of0 hours to make it fair comparison. We also repeat 10 times by
generating 10 instances and computing the average for each setting. Our main result is shown in
Figure 3,4. In a nutshell, BPChain-CD gives a better approximation to the model distribution with
higher average log likelihood than that of competing approaches. In the third experiment we further
show the superiority of our algorithm by precision and recall values.

6.1 Markov random eld

we represents the distribution of each clique in the discrete MRF as a table. For a MRF with
variables, we draw the number of cliques uniformly frfom2n]. Each cliquec contains a subset of
fxiglL; which is randomly drawn. The length of each subset is chosen from the raifigespét
random. In each cliqueof subset length, we have a table of siZ#. We want to arti cially create
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Figure 3: (Left) Averaged log likelihood of 100 samples with different learning algorithms on dis-
crete MRF. (Right) Averaged log likelihood of 100 samples with different learning al-
gorithms on Weighted 3-SAT. We can see that BPChain-CD learns higher average log-
likelihood than competing methods BP-CD and Gibbs-CD in both of the two tasks.

a multi-modal distribution by generating many random peaks within each clique. Towards this goal,
we assign a value v = vy + vqug for each item in the clique’s table. We randomly draw v; from
(0,1), v2 from {0, 1}, and v3 from [10, 1000]. Essentially, the values v for each item correspond
to a random discrete function. In the experiment, we range n from 10 to 31 in intervals of 3, and
draw 10 instances for each setting. For each instance, we draw 1000 training data points (possible
to overlap) for all the three algorithms. We keep the structure of model distribution the same as that
we draw training data from, and initialize parameters as the absolute value of each sample from a
Gaussian distribution NV (10, 10). Learning rate is fixed as 0.1.

Figure 3(a) shows the results of the three algorithms. the x-axis is MRF with different numbers
of variables, and y-axis is the average log-likelihood of randomly selected 100 samples among
those training data. We can see BPChain-CD learns higher average log-likelihood of those training
samples. It is because the samples generated by BPChain approximate the expectation of gradient
more correctly. BP-CD is slightly better than Gibbs-CD (CDjgg) because it generates samples in a
global domain while Gibbs sampling can hardly cross the gap between multi-modes. We also find
that the likelihoods of some training data from BP-CD are very high, while the others are extremely
low, leading to the not high average log-likelihood in the figure. It is because BP-CD makes the
model biased to some training data. We will further demonstrate it in the third experiment.

6.2 Weighted 3-SAT

We next show the performance of BPChain-CD under the setting of Weighted 3-SAT. Given n binary
variables z; € {0,1} fori € {1,...,n}, we first generate random 3-SAT instances in forms of
conjunctive normal form (cnf) with number of clauses 3n. We let each clause of the cnf represented
by a clique of 3 variables and a table of size 8. In each table, we replace 1 with a sample randomly
drawn from [10, 1000] and O with a sample from [0.1, 1]. In the experiment, we range n from 10 to
31 increased by multiples of 3 and also draw 10 instances for each setting. We also generate 1000
training data from each cnf using ACE. We keep the structure of the model distribution of the three
algorithms the same as that of the cnf, where parameters are initialized from the same Gaussian
distribution as in the first experiment. The other settings are also kept the same. We can see from
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decrease it to 0.1 after 100 epochs and further decrease it to 0.01 after 500 epochs. Because of the
walltime, not all algorithms could be trained to the end, so we pick the latest model to compare.
Once the training procedure nished, in each setting with the total number of satis ed sequences
M we generat®M samples from each learned model. Then we compute both precision and recall
values. We de ne precision as the fraction of satis ed sequences we generate and the total number
of sequences generatéiM ), and recall as the fraction of the number of different satis ed generated
sequences and the total number of satis ed sequences under this setiindgrigure 4 shows the
empirical results, where we can see from 4(a) that the model learned by BP-CD has precision 1
almost all the time, however, 4(b) tells us this model is heavily biased. By biasing on part of the
solutions, the model has a large probability to generate satis ed sequences, yet could only generate
as low as less than half satis ed sequences, which means that most other satis ed sequences have
extremely low likelihood. Regardless of BP-CD, our algorithm is better than the traditional Gibbs-
CD in both precision and recall curves.

7. Conclusion

We introduced BPChain-CD, a new variant of the Contrastive Divergence Learning framework,
where samples to approximate the model distribution are generated according to a conditional dis-
tribution chain using BP. We analyzed the bene t of this sampling schedule and its signi cant impact
on the learning process. We demonstrated that learning Discrete MRFs with this BPChain-CD could
provide better results than existing CD methods on Maximum Likelihood Learning problem. It
could also learn a more general model for structured sequences generation problem than Gibbs-CD
and BP-CD. Future directions include a GPU-based implementation of BPChain-CD and applying
the method to deep probabilistic models, such as Structure Prediction Energy Network.
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